5. HALL SUBGROUPS

85.1. Definition of a Hall Subgroup

A Sylow p-subgroup of a finite group G is a
subgroup H where |H| = p" for some n and |G:H| is
coprime to p. The concept of a Hall subgroup generalizes
this and some, but not all, of the Sylow theorems carry
across to Hall subgroups.

Let IT be any set of primes and let IT" be its
complement in the set of all primes. Define Nt denote the
set of all positive integers whose prime divisors are all in
IT. So, Nrr is the set of all positive integers none of whose
prime divisors are in IT. Clearly Ny n Ny = {1}.

Example 1: If TT = {2, 5} then 100 € N; 21 € N and
24 is contained in neither.

A Hall TI-subgroup of a finite group G is a
subgroup H where |[H| € Ny and |G:H| € Ny

A Sylow p-subgroup is a Hall TT-subgroup where
1= {p}-

Example 2: Each of the 5 subgroups of Ss that are
isomorphic to S, are Hall {2, 3}-subgroup of Ss. A Hall
{3, 5}-subgroup of Ss would have to have order 15. The
only group of order 15 is Cis and clearly Ss has no
elements of order 15.
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This example shows that Hall IT-subgroups might
not exist for some sets of primes. Technically we need to
consider all sets of primes IT, but if I'T contains any primes
that don’t divide the order of the group these irrelevant
primes may be removed and the Hall IT-subgroups, if any
exist, will be the same. Therefore we need only consider
subsets of the set of primes dividing the order of the group
and we now use I'T" to denote the complement of IT within
that set of primes. Also, if IT or IT" = J the Hall subgroup
will be the trivial subgroup or the whole group, so we only
need to consider the proper non-trivial subsets.

So for Ss we consider only IT; = {2}, I1, = {3}, I1;
= {5}, 11, = {2, 3}, I1s = {2, 5} and I = {3, 5}. Hall I1-
subgroups exist in Ss for IT; to I, but not I'ls and ITs.

85.2. Hall Subgroups of Finite Soluble

Groups

There is a deep theorem, that relies on
representation theory, which states that every group of
order p3gP°, where p, q are primes, is soluble. For such a
group Hall IT-subgroups exist for all sets of primes IT. For
IT = {p} and IT = {q} they are the Sylow subgroups, for
IT=itis the trivial subgroup and for I'T = {p, q} it is the
whole group. (Other sets of primes, containing irrelevant
primes, are equivalent to one of these four.)

In fact having Hall subgroups for all sets of primes
characterises soluble groups. We shall prove that a finite
soluble group has at least one Hall subgroup for all I'T and
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that any finite group having this property must be soluble.
The theorem about groups of order p2g® being soluble
would then follow as a special case. However this doesn’t
provide an alternative proof because that theorem is used
in the proof.

The proof in each direction involves a rather
intricate proof by induction. In each case we assume that
it holds for all smaller groups. This means that if we have
a proper subgroup, or a quotient by a non-trivial normal
subgroup, we can assume the result. Crucial to this
process are the facts that subgroups and quotient groups
of soluble groups are soluble and the fact that if both G/H
and H are soluble then so is G.

The proofs lend themselves to a pictorial proof, where we
draw at each stage a portion of the lattice of subgroups. If
a subgroup, K, is lower than a subgroup H and is joined
by a line, then H < K. Alongside we show the index of H
in K.

Also, if a subgroup is shown as being a common subgroup
to H and K it is assumed to be H n K.

K H K

Wi R

H HNK
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Theorem 1: A finite soluble group has at least one Hall
I[T-subgroup for every set of primes IT.

Proof: (Because of the graphic nature of this proof there
will be a lot of blank space on the following pages.)

THIS IS A SOLUBLE
G/ GROUP OF ORDER ab
- WHERE GCD(a, b) = 1.
a
H
ab < | WE SHALL SHOW 3
A SUBGROUP OF
b ORDER a.
o
1
~9 G
ab THIS IS A MINIMAL
o NORMAL SUBGROUP
OF G. IT HAS ORDER p'
«~|  FOR SOME PRIME p
o P AND SOME r > 0.
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CASE I: p|a. Since GCD(a,b) =1, p"| a.
G -¢-GIP
b [ HIPEXISTS
. « | SINCE
2 < a < HP | e/p < |G
P pr X b . | &oris
2 | SOLUBLE.
r P p
p \
1 1
G
’} b THIS IS A
«_| SUBGROUP
H*"10F ORDER a.
a
p’ a
P END
p OF
1 CASE |
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CASE I1: p does not divide a. In this case p" | b.

G
~® G/IP
b
b r
ax— <
o £< KIP
ax pr K/P
P al EXISTS
p' SINCE
1 IG/P| < |G|
1 & G/P IS
SOLUBLE.
G
b K
pr
a r
> ap
P
p
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CASE IIA: K< G

b p’
pl’
K H EXISTS SINCE
| |K<|G|&K IS
ap < SOLUBLE.
END OF CASE lIA.
1
CASE 1IB: K=G
a
q
MINIMAL
a < a < | NORMAL
R/P |SUBGROUP
| OFGIP
{I P
p \

1
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Q ISASYLOW
q-SUBGROUP
OF R.

Every conjugate of Q in G is
contained in R (since R is
normal in G) and so is a
Sylow g-subgroup of R and
hence is conjugate to Q in R.

Thus #conjugates of Q in R
= #conjugates of Q in G.

Hence

IG:N6(Q)I = [R:N&(Q)|

= p! for some t.
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CASE I1B()): N< G

e
PN
r‘} b
pt
b | ¢ p «—|H EXISTS SINCE N[ <[G]
ax < AND N IS SOLUBLE.
a
vl END OF CASE I1B(i)
1
CASE 11B(ii): N=G
o G=N 9. G/Q
b
% xDb ®
q H/Q
Q % Xb< %
q° a
® @’ 1
1 HI/Q EXISTS
SINCE |G/Q| < |G|
AND G/Q IS SOLUBLE.

74




END OF CASE I1B(ji).
END OF PROOF.

%O

Theorem 2: If G has order p?g°, where p, g are primes,
then G is soluble.
Proof: As explained above, we omit the proof. ©

Theorem 3: If the finite group G has a Hall IT-subgroup

for all IT then G is soluble.
Proof: (Again, because of the need not to split diagrams
there will be a lot of blank space. Please turn over the

page.)
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G WE SHALL WE PROVE IT BY
SHOW INDUCTION

n | THAT IFH | SUPPOSE the theorem
H EXISTS holds for smaller groups.

FORALL | IF|G|=p?OR p3qP then
no | [ITHENG by Theorem 2, G is
IS soluble.

1 | SOLUBLE. | SUPPOSE |G| = p%g°m
where m > 1 and is
coprime to both p and g.

/’G
m/ K 1S A HALL
K {p, q}-SUBGROUP
mpq { OF G.
pq
o
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M 1S A MINIMAL
NORMAL
SUBGROUP OF G.
IM| = p? FOR SOME d.

ng

=< T
o

[=%

P IS A SYLOW p-
SUBGROUP OF K
CONTAINING M. IT IS
A SYLOW p-
SUBGROUP
OF G
SINCE GCD(p, m) = 1.
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mpiq <

L; ISAHALL {p}-
SUBGROUP OF G.
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b
L, / SUBGROUP OF L;.

m ITISASYLOW p-
o P, = PY SUBGROUP
p? AND SO IS PY FOR
SOME g.
1
G e
qb
L
L, ¢ >y | - ng—l m
P
pa
P.®E ~>ep_pog?
1
1
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SINCE GCD(m, q) = 1:
LA=GANDLNA=P.

LET g=Jk € LK
with 2 e Land k € K.

M = MK since M
is normal in K.

THUS M < L9
FORALLg € G.
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G

[ J [ J
}>1 r<IG|

®

* L
‘S=ﬁ{L9|geG}v\ S
M THIS IS A
PROPER NON- s <Gl
>1 TRIVIAL
1 NORMAL 1
SUBGROUP OF G.

Let IT be any set of primes and let H be a Hall
IT-subgroup of G.

Then [H| = (rs)y = rpSy and

|G:H| = (rs)r = rySpy-
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divides ry ry

r=ryry

divides rp ryy

S
SH S | ()
H =S~H |~
divides S Sy
S =Sy Sy
divides sy Sy

divides rp Sy

Mo St

divides ry; sy

divides rp; sy

M Sn

divides r sy
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r=rgfy

divides r
L

divides r
SnH

. Iy S
dividess; — =
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ATC; GIS -
rH’ r , SHV
r < SH I1
By
° r { #sHis | S{HSNH
o
SNnH
s < - Sy
St
1 1 1
THUS G/S BY HENCE G IS
AND S HAVE INDUCTION SOLUBLE.
HALL TII- THEY ARE %O
SUBGROUPS SOLUBLE.
FOR ALL IT.

85.3. Supersoluble Groups
A soluble group is one such that, for some n, the n™"
derived subgroup G™ is trivial. Hence a group is soluble
if and only if it has a finite normal series

Go=1<G1<Gy<...<Gp=0G6G
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A group is supersoluble if and only if it has such a
finite normal series where each Gi.1/G; is cyclic.

Example 3: Sz is supersoluble, but S, is not (though it is
soluble).

The normal series for S; (it has only one) is 1 < A3 < S,
where As/1= Cz and S3/As = C..

The only normal series for S;is 1 <V, < Ay <S4 where
V4 ={l, (12)(34), (13)(24), (14)(23)}.
Sa/As = Cyand Asy/V4 = Cs but Vo/1 = C, x Cy and so is
not cyclic. There is no normal subgroup that can be placed
between 1 and V, to break the C, x C; into two C;’s.
Lagrange’s theorem states that the order of any
subgroup of a finite group divides the order of the group.
The converse does not hold in general. For example, A4
has no subgroup of order 6.

A finite group, G, that has at least one subgroup
order m for each m dividing |G| is called a CLT group
(with ‘CLT’ standing for ‘converse to Lagrange’s
Theorem”).

Theorem 4: Finite supersoluble groups are CLT groups.
Proof: (next page)
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INDUCTION Ay
SUPPOSE TRUE FOR ;
SMALLER GROUPS |

L
> mh
LET m BEA 1
DIVISOR OF LET
U IG]. 1<K<L<..BEA
1 CHIEF SERIES FOR G.
G
mh
LI [ pa
p
q
Q K
p
q 1

THEN [K|, |L/K| ARE
PRIME
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CASE 1:p|m.
G/K G
h h
H/K H
\ m
m | HHK EXISTS 0
P SINCE
GIK| <|G|. P
1 1
CASE 2: p does not divide m and mp <n.
Hence p|h.
G/K G
h > 1
g H
H/K
m
> <G|
m K
p
1 1
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L EXISTS
SINCE >1
H[<[G].

- mp

1

CASE 3: p does not divide m, mp = n and
Ng(Q) < G.

G = Ng(Q)L
>1
Nc(Q) L
m

q >1
Ne(Q) N L =NL(Q)
Q
q

INc(Q)] =m
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CASE 4: p does not divide m, mp = n and

Ne(Q) = G.
G G/Q
.
mh
q TIQe
. TR
Q normal in G TIQ > mh
EXISTS f
q SINCE
IG/Q| <|G|.
1 1
. G
-
m
m < d
@)
q
1

%O
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EXERCISES FOR CHAPTER 5

Exercise 1: For each of the following statements
determine whether it is true or false.

(1) Ssis a Hall subgroup of S,.

(2) IfIT = {3, 7} then 1323 € Np.

(3) Finite soluble group have Hall IT-subgroups for all IT.
(4) If |G| = 1323 then G is soluble.

(5) Finite dihedral groups are supersoluble.

(6) If G is a finite supersoluble group of order 1323k then
G has a subgroup of order 1323.

Exercise 2: Prove that if a finite group G has a soluble
Hall IT-subgroup then it has a Hall subgroup for every
subset of IT.

Exercise 3: For each of the following sets of prime IT
determine whether of not Sg¢ has a Hall IT-subgroup:

(a) IT= {5}

(b) IT= {3, 5};

(c) IT = {2, 3} [HINT: Suppose Sg has a subgroup H of
index 5 and consider the permutation on the right cosets
of H by right multiplication. Use the fact that the only
normal subgroups of Sg are 1, As and Ss.].
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SOLUTIONS FOR CHAPTER 5

Exercise 1:

(1) FALSE |Ss| and |S4/Ss| are both even.

(2) TRUE: 1323 = 33.7%.

(3) TRUE

(4) TRUE: All groups of order p?q® are soluble.

(5) TRUE: Don = (A, B| A", B2, BA = A'B).

Every subgroup of (A) is normal in D2, S0 a normal series
for (A) with cyclic quotients, followed by D, itself,
would be a normal series for D,y with cyclic quotients.
(6) TRUE: Finite supersoluble groups have subgroups of
all orders dividing their order.

Exercise 2: Let G have a Hall I'T-subgroup H and suppose
H is soluble. Let ® < IT. Then H has a Hall ®-subgroup
K with |K| € Ne. Then |[H:K| € Niie' < Ne.

Now |G:H| € Nir < Ne, s0 |G:K]| = |G:H|.|H:K|e Ne.

Exercise 3:

(@) A Hall IT-subgroup is simply a Sylow 5-subgroup,
which certainly exists for all finite groups.

(b) Let H be a Hall {3, 5}-subgroup of Se.

Then |H| =45 = 325,

Now H has at least one Sylow 3-subroups and at least one
Sylow 5-subgroup. The number of Sylow 5-subgroups
must have the form 1 + 5k and divides 9, so it must be 1.
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So there is just one Sylow 5-subgroup and it must
contain all the elements of order 5. Hence Sg has only 4
elements of order 5, which is clearly a contradiction.
Hence Se has no Hall {3, 5}-subgroup.

(c) Suppose that H is a Hall {2, 3}-subgroup of Se.
Then |H| = 144 and |S¢:H| = 5.
If a is any 5-cycle then the cosets must be:
H, Ha, Ha?, Ha, Ha*.
Let G act on the right cosets of H by Hx—HXxg.
In other words let Q:S¢—Ss be defined by
Q(g) = {Hx — Hxg}.
Clearly (a) must be a 5-cycle. Hence |im Q| > 5.
Let K = ker Q.
By the 1% Isomorphism Theorem, |G/K| > 5 and so
K| < 144.
Since K is normal in Sg it K = 1.
Hence S is isomorphic to a subgroup of Ss, a
contradiction. So no such Hall {2, 3}-subgroup exists.
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