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5. HALL SUBGROUPS 
 

§5.1. Definition of a Hall Subgroup 
 A Sylow p-subgroup of a finite group G is a 

subgroup H where |H| = pn for some n and |G:H| is 

coprime to p. The concept of a Hall subgroup generalizes 

this and some, but not all, of the Sylow theorems carry 

across to Hall subgroups. 

 Let  be any set of primes and let  be its 

complement in the set of all primes. Define N denote the 

set of all positive integers whose prime divisors are all in 

.  So, N is the set of all positive integers none of whose 

prime divisors are in . Clearly N  N = {1}. 

 

Example 1: If  = {2, 5} then 100  N; 21  N and 

24 is contained in neither. 

  

 A Hall -subgroup of a finite group G is a 

subgroup H where |H|  N and |G:H|  N. 

 

 A Sylow p-subgroup is a Hall -subgroup where 

 = {p}. 

 

Example 2: Each of the 5 subgroups of S5 that are 

isomorphic to S4 are Hall {2, 3}-subgroup of S5. A Hall 

{3, 5}-subgroup of S5 would have to have order 15. The 

only group of order 15 is C15 and clearly S5 has no 

elements of order 15. 
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 This example shows that Hall -subgroups might 

not exist for some sets of primes.  Technically we need to 

consider all sets of primes , but if  contains any primes 

that don’t divide the order of the group these irrelevant 

primes may be removed and the Hall -subgroups, if any 

exist, will be the same. Therefore we need only consider 

subsets of the set of primes dividing the order of the group 

and we now use  to denote the complement of  within 

that set of primes. Also, if  or  =  the Hall subgroup 

will be the trivial subgroup or the whole group, so we only 

need to consider the proper non-trivial subsets. 

 So for S5 we consider only 1 = {2}, 2 = {3}, 3 

= {5}, 4 = {2, 3}, 5 = {2, 5} and 6 = {3, 5}. Hall -

subgroups exist in S5 for 1 to 4 but not 5 and 6. 

 

§5.2. Hall Subgroups of Finite Soluble  

Groups 
 There is a deep theorem, that relies on 

representation theory, which states that every group of 

order paqb, where p, q are primes, is soluble. For such a 

group Hall -subgroups exist for all sets of primes . For 

 = {p} and  = {q} they are the Sylow subgroups, for 

 =  it is the trivial subgroup and for  = {p, q} it is the 

whole group. (Other sets of primes, containing irrelevant 

primes, are equivalent to one of these four.) 

 In fact having Hall subgroups for all sets of primes 

characterises soluble groups. We shall prove that a finite 

soluble group has at least one Hall subgroup for all  and 
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that any finite group having this property must be soluble. 

The theorem about groups of order paqb being soluble 

would then follow as a special case. However this doesn’t 

provide an alternative proof because that theorem is used 

in the proof. 

 The proof in each direction involves a rather 

intricate proof by induction. In each case we assume that 

it holds for all smaller groups. This means that if we have 

a proper subgroup, or a quotient by a non-trivial normal 

subgroup, we can assume the result. Crucial to this 

process are the facts that subgroups and quotient groups 

of soluble groups are soluble and the fact that if both G/H 

and H are soluble then so is G. 

 

The proofs lend themselves to a pictorial proof, where we 

draw at each stage a portion of the lattice of subgroups. If 

a subgroup, K, is lower than a subgroup H and is joined 

by a line, then H  K. Alongside we show the index of H 

in K. 

 

Also, if a subgroup is shown as being a common subgroup 

to H and K it is assumed to be H  K. 

 

                            K                         H         K 

 

              |K:H| 

 

                             H                           H  K 
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Theorem 1: A finite soluble group has at least one Hall 

-subgroup for every set of primes . 

Proof: (Because of the graphic nature of this proof there 

will be a lot of blank space on the following pages.) 
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CASE I: p | a. Since GCD(a, b) = 1, pr | a. 
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CASE II: p does not divide a. In this case pr | b. 
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CASE IIA: K < G 

 

 

 

 

 

 

 

 

 

 

 

 

CASE IIB: K = G 
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Every conjugate of Q in G is 

contained in R (since R is 

normal in G) and so is a 

Sylow q-subgroup of R and 

hence is conjugate to Q in R. 

 

Thus #conjugates of Q in R 

= #conjugates of Q in G. 

 

Hence 

|G:NG(Q)| = |R:NR(Q)| 

                 = pt for some t. 
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CASE IIB(i): N < G 

 

 

 

 

 

 

 

 

 

 

 

CASE IIB(ii): N = G 
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☺ 

 

Theorem 2: If G has order paqb, where p, q are primes, 

then G is soluble. 

Proof: As explained above, we omit the proof. ☺ 

 

Theorem 3: If the finite group G has a Hall -subgroup 

for all  then G is soluble. 

Proof: (Again, because of the need not to split diagrams 

there will be a lot of blank space. Please turn over the 

page.) 
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            G 
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Let    be any set of primes and let  H  be a Hall 

-subgroup of G. 

Then |H| = (rs) = rs and 

|G:H| = (rs) = rs. 
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THUS G/S 

AND S HAVE 

HALL -

SUBGROUPS 

FOR ALL . 

BY 

INDUCTION 

THEY ARE 

SOLUBLE. 

HENCE G IS 

SOLUBLE. 
☺ 

 

§5.3. Supersoluble Groups 
 A soluble group is one such that, for some n, the nth   

derived subgroup G(n) is trivial. Hence a group is soluble 

if and only if it has a finite normal series 

 

G0 = 1 < G1 < G2 < … < Gn = G 

 

where each Gi is normal in G and where each Gi+1/Gi is 

abelian. 
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 A group is supersoluble if and only if it has such a 

finite normal series where each Gi+1/Gi is cyclic. 

 

Example 3: S3 is supersoluble, but S4 is not (though it is 

soluble). 

The normal series for S3 (it has only one) is 1 < A3 < S3, 

where A3/1  C3 and S3/A3  C2. 

 

The only normal series for S4 is 1 < V4 < A4 < S4 where 

V4 = {I, (12)(34), (13)(24), (14)(23)}. 

S4/A4  C2 and A4/V4  C3 but V4/1  C2  C2 and so is 

not cyclic. There is no normal subgroup that can be placed 

between 1 and V4 to break the C2  C2 into two C2’s. 

 Lagrange’s theorem states that the order of any 

subgroup of a finite group divides the order of the group. 

The converse does not hold in general. For example, A4 

has no subgroup of order 6. 

 

 A finite group, G, that has at least one subgroup 

order m for each m dividing |G| is called a CLT group 

(with ‘CLT’ standing for ‘converse to Lagrange’s 

Theorem’).  

 

Theorem 4: Finite supersoluble groups are CLT groups. 

Proof: (next page) 
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CASE 1: p | m. 

 

 

 

 

 

 

 

 

 

 

 

CASE 2: p does not divide m and mp < n.  
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CASE 3: p does not divide m, mp = n and 

NG(Q) < G. 
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CASE 4: p does not divide m, mp = n and 

NG(Q) = G. 
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EXERCISES FOR CHAPTER 5 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) S3 is a Hall subgroup of S4. 

(2) If  = {3, 7} then 1323  N. 

(3) Finite soluble group have Hall -subgroups for all . 

(4) If |G| = 1323 then G is soluble. 

(5) Finite dihedral groups are supersoluble. 

(6) If G is a finite supersoluble group of order 1323k then 

G has a subgroup of order 1323. 

 

Exercise 2: Prove that if a finite group G has a soluble 

Hall -subgroup then it has a Hall subgroup for every 

subset of . 

 

Exercise 3: For each of the following sets of prime  

determine whether of not S6 has a Hall -subgroup: 

(a)  = {5}; 

(b)  = {3, 5}; 

(c)  = {2, 3} [HINT: Suppose S6 has a subgroup H of 

index 5 and consider the permutation on the right cosets 

of H by right multiplication. Use the fact that the only 

normal subgroups of S6 are 1, A6 and S5.]. 
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SOLUTIONS FOR CHAPTER 5 
 

Exercise 1: 

(1) FALSE |S3| and |S4/S3| are both even. 

(2) TRUE: 1323 = 33.72. 

(3) TRUE 

(4) TRUE: All groups of order paqb are soluble. 

(5) TRUE: D2n = A, B | An, B2, BA = A−1B. 

Every subgroup of A is normal in D2n so a normal series 

for A with cyclic quotients, followed by D2n itself, 

would be a normal series for D2n with cyclic quotients. 

(6) TRUE: Finite supersoluble groups have subgroups of 

all orders dividing their order. 

 

Exercise 2: Let G have a Hall -subgroup H and suppose 

H is soluble. Let   . Then H has a Hall -subgroup 

K with |K|  N. Then |H:K|  N−  N. 

Now |G:H|  N  N, so |G:K| = |G:H|.|H:K| N. 

 

Exercise 3: 

(a) A Hall -subgroup is simply a Sylow 5-subgroup, 

which certainly exists for all finite groups. 

(b) Let H be a Hall {3, 5}-subgroup of S6. 

Then |H| = 45 = 32.5. 

Now H has at least one Sylow 3-subroups and at least one 

Sylow 5-subgroup. The number of Sylow 5-subgroups 

must have the form 1 + 5k and divides 9, so it must be 1. 
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 So there is just one Sylow 5-subgroup and it must 

contain all the elements of order 5. Hence S6 has only 4 

elements of order 5, which is clearly a contradiction. 

Hence S6 has no Hall {3, 5}-subgroup.  

(c) Suppose that H is a Hall {2, 3}-subgroup of S6. 

Then |H| = 144 and |S6:H| = 5. 

If a is any 5-cycle then the cosets must be: 

H, Ha, Ha2, Ha3, Ha4. 

Let G act on the right cosets of H by Hx→Hxg. 

In other words let :S6→S5 be defined by 

(g) = {Hx → Hxg}. 

Clearly (a) must be a 5-cycle. Hence |im |  5. 

Let K = ker . 

By the 1st Isomorphism Theorem, |G/K|  5 and so 

|K|  144. 

Since K is normal in S6 it K = 1. 

Hence S6 is isomorphic to a subgroup of S5, a 

contradiction. So no such Hall {2, 3}-subgroup exists. 

 

 

 


